Solution:
The Kth element will be found within first K elements of both arrays, so we consider only these elements or whole array if size is less than K
We use recursive procedure. We compare (K/2)th element in arrays A(0 K) and B(0 K)
if A(K/2) < B(K/2) we recursively find (K-K/2)th smallest element in A(K/2+1 K) and B(0 K/2) eliminating first K/2 elements from A else if A(K/2) > B(K/2) we recursively find (K-K/2)th smallest element in B(K/2+1 K) and A(0 K/2) eliminating first K/2 elements from B
if A(K/2) == B(K/2) return A(K/2) as answer
Boundaries must be checked in the procedure
There are two solutions possible for this problem. I am also giving the linear O(N+M) solution which is simple but less efficient.
Complexity:
1. TIme : O(log N + log M)
2. Space : O(1)
Code:
void kth_smallest(int[] A, int M, int[] B, int N, int K, int &result){
int a_high = (M < K) ? M : K;
int b_high = (N < K) ? N : K;
result = find_kth(A, 0, a_high, B, 0, b_high, K);
}
int find_kth(int[] A, int a_low, int a_high, int[] B, int b_low, int b_high, int K){
// boundary cases
if(a_low > a_high)
return B[b_low + K - 1];
if(b_low > b_high)
return A[a_low + K - 1];
int mid = (K+1)/2; // finding ceiling of K/2
if(A[mid] == B[mid])
return A[mid];
else if(A[mid] < B[mid])
return find_kth(A, a_low + mid+1, a_high, B, b_low, b_low + mid, mid);
else if(A[mid] > B[mid])
return find_kth(A, a_low, a_low + mid, B, b_low + mid + 1, b_high, mid);
}
void kth_smallest_linear(int[] A, int M, int[] B, int N, int K, int &result){
int i=0, j=0;
for( ; K; K--){
if(i >= M){
result = B[j + K - 1];
break;
}
if(j >= N){
result = A[i + K - 1];
break;
}
if(A[i] == B[j]){
result = A[i++];
j++;
}
else
result = (A[i] < B[j]) ? A[i++] : B[j++];
}
}
|